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We present preliminary results for a prequantization procedure that leads in a 
natural way to the Dirac equation. The starting point is the recently introduced 
n-symplectic geometry on the bundle of linear frames L M  of an n-dimensional 
manifold M in which the Rn-valued soldering 1-form 0 on L M  plays the role of 
the n-symplectic potential. On a 4-dimensional spacetime manifold we consider 
the tensorial R4@ •4-valued function ~ on L M  determined by the spacetime 
metric tensor g as the Hamiltonian for free observers and determine the 
associated 0~4-valued Hamiltonian vector field )?~ = Xi~| "Integration" of 
the X~ yields the dynamics of free observers on spacetime, namely parallel 
transport of linear frames along spacetime geodesics. In order to obtain a vector 
field on the spin bundle SM which is a lift of .~  and which is induced by a 
vector field .~  for an appropriate mapping ~, it is useful to define a prolonga- 
tion L ~  of some bundle L~ of oriented frames of M. If GL +(4, R) denotes 
the identity component of GL(4~, ~), then GL +(4, R) is the structure group of 
L~  and its double cover GL+(4, R) is the structure group of L ' ~ .  We show 
that the lift ~ of 0 on L~ to L ~  induces a natural 4-sympleetic potential on 
L~  If ~ is the lift of ~ to L ~  then we find the R4-valued Hamiltonian vector 
field .~  on L ~  determined by ~ and show that the vector fields X~ on L ' ~  are 
tangent to the subbundle SM. "Integration" of the restriction of the X~ to SM 
now yields parallel transport of spin frames and thus tetrads along spacetime 
~odesics of g. We consider a naive prequantization operator assignment 
X ~ , ~ , = i h ? ~ X ~  acting on C4-spinors in the standard representation of 
SL(2, C). The eigenvalue equation for the system of new Hilbert space operators 
yields the Dirac equation. 

1. I N T R O D U C T I O N  

T h e  K o s t a n t - S o u r i a u  t h e o r y  o f  g e o m e t r i c  q u a n t i z a t i o n  ( K o s t a n t ,  

1974; S o u r i a u ,  1970) t h a t  has  been  d e v e l o p e d  o v e r  the  last  20 p lus  years  
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takes symplectic geometry as the basic geometrical building block. That is 
to say, to set up the fundamental structure of the theory one does not need 
to assume a Riemannian metric tensor, a linear connection, or any other 
geometrical structure beyond symplectic geometry. These additional struc- 
tures are only needed once one wants to work out the details of a specific 
model within the context of the general theory. Thus, for example, the 
theory of the free relativistic point particle in a curved spacetime (M, g) 
follows from the general theory applied to the Hamiltonian H = ff thought 
of as the mass-squared operator. Here ~ is the R-valued function on T*M 
determined by the metric tensor g, and ~ takes the quadratic form 
~, =giJ(q)pip j in local coordinates (q;,pj) on T*M. In the Schrrdinger 
representation one finds (Sniatycki, 1980) the Klein-Gordon equation as 
the eigenvalue equation for the mass-squared operator. Thus the standard 
theory built on symplectic geometry on T ' M ,  the free particle Hamiltonian 
H =~,  and the Schrrdinger representation leads to the Klein-Gordon 
equation rather than the Dirac equation. On the other hand, in Souriau's 
derivation of the Dirac equation (Souriau, 1970) he assumes the existence 
of a representation of Dirac 4-spinors and uses the symplectic structure on 
coadjoint orbits in the dual Poincar6 Lie algebra P(4)*. The new derivation 
of the Dirac equation presented in this paper will follow from a different 
approach that is in a sense a mixture of these two approaches. 

Our basic idea is to abandon standard symplectic geometry on T*M 
and work instead with a generalized symplectic geometry on the bundle of 
linear frames LM. We shall also assume the existence of 4-spinor represen- 
tations. The bundle of linear frames L M  of an n-dimensional manifold M 
supports a natural structure, based on the Rn-valued soldering l-form, that 
may be viewed as an "n-symplectic structure." We refer to the resulting 
geometry as "n-symplectic geometry." The allowable observables associ- 
ated with this new geometry on L M  contain the tensor-valued functions 
representing contravariant tensor fields on M. The metric tensor is the 
Hamiltonian tensor for free observers, thus serving as the analog of the free 
particle Hamiltonian on T*M. For a four-dimensional spacetime manifold 
M we determine by equation (3.1) the Ra-valued Hamiltonian vector field, 
or four-dimensional Hamiltonian distribution which corresponds to the 
metric tensor. The classical dynamics associated with the Hamiltonian 
distribution is the parallel transport of frames along geodesics in M. Note 
that in 4-symplectic geometry the free observer Hamiltonian yields four 
Hamiltonian vector fields, compared with the single Hamiltonian vector 
field defined on T*M. The fact that we obtain four Hamiltonian vector 
fields clearly suggests the possibility of constructing the Dirac operator via 
a geometric quantization approach. 
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To lift this Hamiltonian distribution to SM, the spin bundle over M, 
we must first restrict it to O~ a component of the orthonormal frame 
bundle (OM, g), with group the identity component of  the Lorentz group 
(Bleecker, 1981, p. 81). However, if we define g to be the R4| N4-valued 
tensorial 0-form on L M  determined by g, then ~,]O~ is constant, corre- 
sponding to the view of  O~ as a constant energy-momentum surface in 
LM. Hence d(~[O~ - 0  and we cannot determine Hamiltonian vector 
fields. So in order to determine the Hamiltonian distribution )(g on O~ 
first we must work on LM, and then restrict to O ~ Similarly, in order to 
find a Hamiltonian distribution on SM we must find a way to extend SM. 
It is the purpose of this paper to demonstrate a technique which permits us 
to do so and consequently to obtain a Hamiltonian distribution on SAC 
describing free observers. The resulting distribution then may be used to 
construct the Dirac equation. 

Let L~ be a subbundle of L M  with group GL+(4,  N), the identity 
component of  GL(4, ~). Consider the bundle prolongation of  L~  to a 
GL 4~4, N) bundle, L~ On L~ we find the N4-valued Hamiltonian 
vector field Jig determined by the free particle Hamiltonian tensor H = ~, 
where ~ is the lift of  g to L~ Then we observe that "integration" of  the 
system of  vector fields yields SM as a subbundle of  L~ structure 
subgroup SL(2, C). A Hermitian operator, the naive prequantization oper- 
ator, is defined on the restriction to SM of the Hamiltonian vector field on 
L'WM. We may now assign to this Hermitian operator a representation as 
an operator on L2(SM, C4), the space of Dirac 4-spinors. As an end result 
we show that the Dirac equation arises as the eigenvalue equation for this 
spinor representation of  the naive prequantizafion operator determined by 
the free particle Hamiltonian tensor H. 

2. SURVEY OF n-SYMPLECTIC GEOMETRY ON L M  

Let M be an n-dimensional manifold and L M  the principal fiber 
bundle of linear frames of M. The dimension of L M  is the even number 
n(n + 1). A point u~LM will be denoted by the pair (p, ei) where p ~ M  
and (et) = (el, e2 . . . .  , e~) denotes a linear frame at p. The projection map 
n: L M ~ M  is defined by n(p, e i )=p.  The structure group of  L M  is the 
general linear group GL(n, g~), which acts freely on the right of L M  by 
Rg(p, ei) =- (p, ei) " g = (p, ejg~) for g = (gj)~GL(n, R). The summation 
convention on repeated indices is employed throughout this paper. 

Local coordinates on L M  may be defined as follows (Norris, 1993). 
If  (U,x  ~) is a chart on M, then define local coordinates (x",n{):  
n - l ( U )  -~ R n x N": by xi(p, ej) = xi(p) and n{(p, e,.) = #(t?/axk). Here 
( # ) , j  = l, 2 . . . . .  n, denotes the coframe dual to the linear frame (ej). Note 
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that we follow the standard practice of  using x ~ to denote coordinates on 
both U c M and n - I(U) c L M .  

The structure of L M  is special in the sense that it supports a globally 
defined •"-valued 1-form, the soldering 1-form 0 = Oir~. Here rl, r 2 , . . . ,  r n 
denotes the standard basis of  ~". Each point u e L M  can be defined 
(Kobayashi and Nomizu, 1963) as a linear isomorphism u: R " ~  T,( , )M. In 
local coordinates u can be defined by 

with inverse 

u(~'r~) = (p, ej)(~ir,),= ~ie  i (2.1) 

u - l ( X )  =- (p, e i ) - l ( X )  = ei(X)ri, X ~ T p M  (2.2) 

Then the soldering 1-form 0 may be defined by (Kobayashi and Nomizu, 
1963) 

clef 

O(Y) = u - l ( r c , Y ) ,  V Y ~ T ,  L M  (2.3) 

In local coordinates (x i, rt~,) the soldering one-form has the local expression 

Oiri = (~z~ axJ )ri = (~z~ri ) ax j (2.4) 

Compare this form to the expression ~ = nj dx s for the canonical one-form 
on T * M  in canonical coordinates. The difference is that the momentum 

^ ~  i coordinates nj on T * M  are R-valued, while the rcj.-rcj,, on L M  are 
R"-valued. 

Consider now the exact ~'-valued 2-form dO. By (2.4) it has the local 
coordinate expression 

dO = dOiri = (dn~ ^ dxJ)ri (2.5) 

Using equation (2.5), it is easy to show that dO is nondegenerate in the 
sense that 

X A d O  = 0  r X = 0  (2.6) 

Thus dO has the basic properties of a symplectic structure, although it is 
•"-valued. This motivates the following definition: 

Definition. Let P be a principal fiber bundle over a manifold M with 
group G. Let the dimension of M be n. An n-symplectic structure on P is 
an R'-valued 2-form o9 on P that is closed and nondegenerate in the sense 
of equation (2.6). The pair (P, co) is an n-symplectic manifold. 

The theory of n-symplectic geometry on (LM,  dO) (Norris, 1993) is 
based on generalizing the basic structure equation 

d f  = - X f  A d,9 (2.7) 
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on T * M  to (LM,  dO). In (2.7), fdeno tes  any smooth B-valued function on 
T*M.  Since dO is R'-valued, the range of the variables changes in n-sym- 
plectic geometry. The simplest generalization of (2.7) is 

a f  = - X j  (2.8) 

where n o w f i s  a smooth R'-valued function on L M .  Since dO is nondegen- 
erate if a vector field X] satisfies (2.8) for a given ~"-valued function j~ then 
it will be unique. On the other hand, the soldering one-form 0 transforms 
tensorially under right translations Rg for gEGL(n )  according to 
R* 0 = g - ~ - 0. A consequence of this tensorial nature of 0 is that not every 
R'-valued function on L M  is compatible with equation (2.8). On the other 
hand, all smooth R-valued functions on T * M  are compatible with equation 
(2.7). 

Let T * denote the set of ~n-valued functions f on L M  that transform 
tensorially under right translation by R ' f - - - g - ~  . f .  Such functions are in 
one-one  correspondence with vector fields on M. Denote by H F  1 the set of 
~'-valued functions on L M  that are compatible with (2.8). Norris (1993) 
shows that 

H F  ~ = T 1 �9 C~ ~ ' )  (2.9) 

where the second factor denotes the smooth R'-valued functions on L M  
that are invariant on fibers. For each f ~ H F  1 equation (2.8) assigns a 
unique Hamiltonian vector field X?. The Poisson bracket o f ~  ~ H F  l is 
defined by 

{s~ o~} -- XZ(~) (2.10) 

and H F  j is a Lie algebra under this bracket. Denote by H V  ~ the set of 
Hamiltonian vector fields X? determined by elements of H F  ~. Then one 
shows that 

[Xf, X~] = X~,~) (2.11) 

so that H V  ~ forms a Lie algebra. 
From (2.8) it is clear that the constant ~"-valued functions in 

C~ R ' )  c H F  ~ are all mapped to the zero vector field. Identifying these 
constant functions with ~ ' ,  we have that as Lie algebras 

H V  ~ = HF1/R" (2.12) 

Strictly speaking, the bracket defined in (2.10) is not a Poisson 
bracket, but simply a Lie bracket, since it is not a Lie derivation. However, 
the bracket becomes a true Poisson bracket when H F  ~ is combined with the 
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higher rank symmetric TPN"-valued observables. Let 

P n 
STP = {f: L M  -+ |  R ] f (u  . h) -- h - '  . f ( u )  Vh ~ G r ( n )  } 

denote the vector space of functions on L M  which have their values in the 
P 

vector space (~) s ~", where ~ )  s denotes the symmetric tensor product. Let 
SX p denote the vector space of symmetric rank-p contravariant tensor 
fields on M and observe that each element of S T  p corresponds to a unique 
element of S X  p. We denote by S T  = ~ p = l S T  p the infinite-dimensional 
vector space which is the direct sum of the vector spaces S T  p. 

An e l e m e n t f e S T  p determines (Norris, 1993) an equivalence class ~Xs 
of ~t" +pp ~ 2) vector f i e l d s  ~X?~ il"''ip. -- t via the n-symplectic structure equation 

d f ' l ' p  = - p ! X J  I '+  - 'A dO 'p  ) (2.13) 

where parentheses on indices denotes symmetrization. We note that al- 
though dO is nondegenerate in the sense of (2.6), because of the sym- 
metrization in (2.13) the nondegeneracy is lost. For a given l e S T  p 
equation (2.13) only determines the vector f ie lds  X~ "''ip -1 up to addition of 
vector fields Y ; " + - :  satisfying the kernel equation 

yol. .+ - ,  A dO~p ) = 0 (2.14) 

If  a set of vector fields yi l . .+_,  satisfies (2.14), then each vector field 
y~ , .+ - i  must be vertical. For a given f E S T P  equation (2.13) thus deter- 
mines an equivalence class of TPR"-valued Hamiltonian vector fields 
([[X?~;,; ,-  9, where two TPR"-valued vector fields are equivalent if their 
difference satisfies equation (2.14). 

An element 

f = f i l i > +  re, | ri= | " �9 �9 |  ri e S T  p 

has the local canonical coordinate representation 

f i :  i2 . . . i , ,  = f J l J 2 . .  % (  r ~ z r  il  ,Tr i~ 2 �9 �9 �9 T~ ip 
J \ ' ' 1  " ' J  1 " ' J  2 Jp (2 .15)  

The associated equivalence classes of Hamiltonian vector fields 
~Xj]i,/2+ -1 determined by equation (2.13) have the local coordinate 
representations 

- -  . 7~ ,o - 1  
rcJl ~s2 & - i ~x k (P _ 1)!.y,J2-.+-,k '1 ;2 . .  i 

i I i i i i 
" "  - lrcJ" + Jon~  (2.16) 
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where the components T 2~ ~.-.~2 ~_,b must satisfy 

T(qi2...,p _ !b)  = 0 (2.17) 

but are otherwise arbitrary. 
The fact that one obtains equivalence classes of vector fields rather 

than vector fields for the higher rank observables does not interfere with 
the basic algebraic structures in n-symplectic geometry. For each p 2 1 the 
set of equivalence classes of @ p-~"-va lued  vector fields on LM,  with 
equivalence defined as above, forms an infinite-dimensional vector space. 
Denote by H V ( S T  p) the vector space of (~)~-~N"-valued equivalence 
classes of vector fields determined by elements of S T  p by equation (2.13). 
For f ~ S T  p and g e S T  ~ define the Poisson bracket {, } : S T P x  STq--* 
STP+q-  I by 

~}ili2""ip 4-q --1 ~ ,p !  X(/li2"''ip --l(~ipip § i.,.ip + q  _ 1 ) )  (2.18) 

where X)~ ~2...;: - ,  is any representative of the equivalence class [[X?~h ~2...i, _~. 
The bracket so defined is easily shown to be independent of the choice of 
representatives and has all the properties of a Poisson bracket. In fact when 
the bracket defined here is reexpressed on the base manifold M, it gives 
(Norris, 1993) the differential concomitant of Schouten (1940) and Nijen- 
huis (1955) of the symmetric tensor fields corresponding to l a n d  ~. 

Theorem 2. I. The space S T  of symmetric tensorial functions on L M  is 
a Poisson algebra with respect to the Poisson bracket defined in (2.18). 

It is convenient to introduce the multi-index notation 

rili2...ip_k~ril@sri2(~s''" @srip_t~ for O < k < p - 1  

Let 

and  -'ril,2 
denote the vector-valued equivalence classes of vector fields determined by 
f ~ S T  p and g,~sr  q. Denote a bracket by 

= c x:l + _ 2  

= ~[X7 '2"'+ - ' ,  X~ ~p + ' +  +*-2]r','2--.'p +q-2~ (2.19) 

where the bracket on the right-hand side is the ordinary Lie bracket of 
vector fields calculated using arbitrary representatives. One shows that 

[X7/2'p - ' ,  X~ tp + ' +  +* -21r,,,2...,, +, _2 s~X{?~)~ (2.20) 

and thus the bracket defined in (2.19) is welt-defined, and we write 

[~J(?~, ,~J(~ ~] = ~)?{Z~)~ (2.21) 
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Moreover, the bracket defined in (2.19) is antisymmetric. Denote the direct 
sum of  the vector spaces H V ( S T  p) by HV(ST) .  

Theorem 2.2. The vector space H V ( S T )  of  vector-valued equivalence 
classes of  Hamiltonian vector fields on L M  is a Lie algebra with respect to 
the bracket defined in (2.19). 

In general, it can be observed that n-symplectic geometry selects 
"allowable observables" in the sense that not every @ p n s ~ -valued func- 
tion on L M  is compatible with (2.13). It is known (Norris, 1993) that the 
most general @Ps R"-valued function on L M  that can satisfy (2.13) for 
some set of  vector fields must be a polynomial in the momentum coordi- 
nates with coefficients in the set of  functions that are invariant on fibers on 
LM.  We denote this set by S H F  p. For a given p -> 1 the homogeneous 
degree p polynomials in S H F  p form the set S T  p, while for p > 2 the 
lower-degree polynomials do not in general correspond to elements of  S T  q 
for 0-< q <p .  The reader is referred to Norris (1993) for more details. 

3. THE METRIC TENSOR AS A GENERALIZED HAMILTONIAN 
TENSOR FOR FREE INERTIAL OBSERVERS 

Now we wish to study the dynamics generated by the spacetime metric 
tensor Hamiltonian ~ on LM,  where M is a 4-dimensional spacetime 
manifold, within the context of  4-symplectic geometry. First we consider 
the classical phenomena and then we examine the prequantization assign- 
ments. 

Let g = giJO i @, Oj be the local coordinate form of  the metric tensor on 
spacetime, and let ~ ;J " b = g rCi ~j r~ | rb denote the corresponding symmetric 
tensorial function on LM.  As a special case of  (2.13), the 4-symplectic 
structure equation is 

dg ij = --2X[ ~ _3 dO j) (3.1) 

and the associated Hamiltonian vector fields Xg determined by this equa- 
tion have the local expressions 

Xg-gabl"cia 63 1 co ab . } 63g~0 
- + 

To fix the nonuniqueness globally in these vector fields one can impose 
the invariantly defined constraint equation 

X ~ X ~ a O ~ = O  Vi, Z k = 0 . . . .  ,3  (3.3) 
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This condition uniquely determines the arbitrary functions T~ so that the 
resulting Hamiltonian vector fields are 

~ x  b + U,.g re J~ ~ (3.4) 

The functions Fbc are the Christoffel symbols of the Levi-Civita connection 
defined by g. 

It is straightforward to check that the distribution on LM spanned by 
the vector fields 

B k ~ gk i~t~  

= (~-1)~, + r ; : ,  (3.5) 

is the horizontal distribution of the Levi-Civita connection. Here g,.j = 
(g,b)(rC-I)~(n-1)~, where the functions gi: are the components of the 
matrix inverse of (gi:) and (rc-l)~,n~ = fi~. The vector fields B; are easily 
seen to be the "standard horizontal vector fields" (Kobayashi and Nomizu, 
1963) determined by the connection. Note that the constraint equation 
(3.3) is equivalent to the property that the Levi-Civita connection has no 
torsion. 

Let us next consider the dynamics associated with the Hamiltonian 
vector fields Xg defined in equation (3.4). When there is only a single 
Hamiltonian vector field X b as in the case for the tensorial R4-valued 
function f as well as in standard symplectic geometry on T'M,  then the 
dynamics is given by the integral curves of X:. One can ask if the 
distribution spanned by the X~ is integrable, but it is well known that only 
fiat connections have integrable distributions. On the other hand, the 
vector fields Bk, and hence also the vector fields X~, are tangent to the 
subbundle of orthonormal linear frames OM determined by g. Thus we 
may define an "integral" of the set of Hamiltonian vector fields Xg to be 
OM (Norris, 1993). Because the integrals of the X~ do not form an 
involutive distribution, the subbundle OM is not a leaf of a foliation 
induced by the X~ alone. Instead OM serves as the analog of the "constant- 
energy surfaces" in standard symplectic geometry. 

Since a section of OM represents a local orthonormal linear frame 
field on M we may conclude that the dynamics defined by the four 
Hamiltonian vector fields is the dynamics of orthonormal frames, and hence 
the dynamics of local observers on spacetime. More explicitly, consider the 
integral curves of the "timelike" Hamiltonian vector field X ~ (Here 
"timelike" means that X ~ projects to a timelike vector field on M.) The 
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differential equations for the integral curves of X ~ are, from equation (3.4), 

d x  i r 0 dg~ _ rb ac o k (3.6) 
d-t- = ~  "'J' dt - l j cg  ZCa~b 

These equations decouple into the two sets of equations. For k = 0 we 
obtain 

dxi ij o d ~ ~  r~b ac o o (3.7) 
d~- = g ~ j '  dt - *jcg ~Z,~Zb 

and f o r k = ~ = l , 2 , 3  

dn~ rb ~" o ~ (3.8) 
dt = ~ j c g  7~aT~b 

The pair of equations (3.7) combine into the second-order geodesic 
equation 

d2x i dx j dx k 
dt---5-+ F~k - ~  d~- = 0 (3.9) 

while equation (3.8) can be rewritten as 

DTz~ d~; ~ dx i 
Dt - dt - F i j - ~ = 0 ,  a = 1 , 2 , 3  (3.10) 

These last equations are just the equations for parallel transport of the 1, 
2, and 3 legs of a coframe along the geodesic determined by equation (3.9). 
The result is that X ~ generates parallel transport o f  linear f rames  and 

coframes along timelike geodesics o f  Fg. If we repeat this discussion for, say 
X), then again we obtain parallel transport of linear frames along 
geodesics, but these geodesics will generally be spacelike. The four Hamil- 
tonian vector fields Xg associated with the spacetime metric tensor can 
therefore be used to construct the local Lorentzian coordinate systems 
carried by a freely-falling observer. 

4. DEVELOPMENT OF 4-SYMPLECTIC GEOMETRY ON THE 
ORTHONORMAL FRAME BUNDLE AND THE SPIN BUNDLE 
OF SPACETIME 

Let M be a four-dimensional manifold. The orthonormal frame bundle 
O M  can be obtained as a bundle reduction of L M  via symmetry breaking 
by the tensor field ~ , : L M - - ~ T ~ R  4, specifically, O M = ~ , - l ( q ) ,  where 
q = diag( l, - 1, - l, - 1). The reduced bundle O M  has as its standard fiber 
the Lorentz group O( 1, 3). Let M be space and time orientable and denote 
an arbitrary choice of component of O M  by O~ Then O ~  is a principal 
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fiber bundle over M with standard fiber, SO~ 1, 3), the connected identity 
component of  the Lorentz group. 

Now recall the structure of  the spin bundle S M  over O~ (Bleecker, 
1981). SM is a principal fiber bundle over M with standard fiber SL(2, C), 
the special linear group on C2. The spin structure consists of  SM with a 
bundle homomorphism ~,: SM ~ O~ and universal covering group homo- 
morphism A: SL(2, C) ~ S O ~  3) such that 2(p �9 g) = 2(p) �9 A(g) for 
p ~ S M  and gsSL(2 ,  C). S M  is then a double cover of  O~ We recall that 
if M is noncompact, then such a spin structure exists if and only if O~ is 
trivial (Geroch, 1968). 

Motivated by the fact that the bundle of  frames of 2-spinors is such a 
spin structure over O~ we would like to put a 4-symplectic structure on 
an arbitrary spin bundle. A natural choice would be a 4-symplectic 
structure inherited from O~ We may simply pull back the canonical 
1-form on O~ Let g=~.*(OIT(O~ Then dO---;t*(dOIT(O~ For 
g ~ SL(2, C) it follows that R* ff = A(g) -  1 . 0". So dff is tensorial, closed, and 
nondegenerate in the sense of  (2.6) and thus is a candidate for an N4-valued 
4-symplectic form on SM. 

Now for the tensorial metric function ~: L M ~  T2o N4 (Norris, 1993), 
we note that ~]O~ = q and d(~,lO~ = 0. Thus the 4-symplectic equa- 
tion becomes 

X~ i Z dO -i) = 0 (4.1) 

Observe that the constraint equation (3.2) is identically satisfied in this 
case. We have for Hamiltonian vector fields on O~ 

X~ = T~ k 0 ~ '  where r} ik) = 0 (4.2) 

Consequently the corresponding Hamiltonian vector fields at u e S M  in- 
duced by isomorphism 2,1T.SM are also purely vertical. So this construc- 
tion of  Hamiltonian vector fields on S M  is too restrictive. 

5. P R O L O N G A T I O N  OF F R A M E  B U N D L E S  A N D  LIFTS OF 
METRIC C O N N E C T I O N  G E O M E T R Y  

Recognizing that the restriction of  the 4-symplectic equation to O~ 
is the source of  our difficulty in obtaining Hamiltonian vector fields, we are 
motivated to enlarge SM to recover the geometry of the full frame bundle. 
We do so by the method of prolongation of the frame bundle (Dabrowski 
and Percacci, 1986), that is, the construction of a principal fiber bundle 
whose structure group is the universal cover of the structure group of the 
f?ame bundle. Note that L~ the connected component of  L M  containing 
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O~ as a subbundle, can be reconstructed from O~ as it can be 
identified with the extension O~ Xsoo(,,3 ) GL +(4, N), where GL +(4, ll~) is 
the component of GL(4, It~) containing the identity. We recall that the 
"canonical identification" (Dabrowski and Percacci, 1986) 

O~ Xsoo(t,3) GL+(4, N) --*L~ [(p, ei), g] ~-~ (p, ei ' g) 

is a bundle isomorphism. Although L~ is a principal fiber bundle with 
fiber GL +(4, R), it is also a bundle associated to the principal fiber bundle 
O~ 

To motivate the analogous extension of SM, let us study the spin 
structure map 2: SM--* O~ The group SL(2, C) is the universal cover of 
SO 0( 1, 3) and 2 is a double cover respecting the coy~ering homomorphism. 
Denote the universal cover of GL+(4, R) as GL~+(4, It~) with projection 
~,: GL +T4, ~ ) ~ G L + ( 4 ,  R). We observe that GL+(4, R) is a 2-1 cover of 
GL + (4, R). 

Now SL(2, C) is a proper Lie subgroup of GL+(4, R). Indeed it is 
known (Lawson and Michelsohn, 1989) that SL(2, C) is isomorphic to the 
simply connected spin group Spin~ 1, 3), and thus is generated by units in 
the Clifford algebra CI( 1, 3) = CI(R 4, r/). Moreover CI( 1, 3) is a subalgebra 
of Cl(3, 3) whose units in turn generate Spin~ 3) - SL('~,, R), the univer- 
sal covering group of SL(4, ~). It follows that SL(2, C) is a Lie subgroup 
of SL~,  R). Now GL+(4, N) ~- g~+ x SL(4, R) and ll~ + is contractible, so 
GL+(4, R)---~+ xSL(~, N) and thus we have that S L y ,  R) is a Lie 
subgroup of GL+(4, N). Thus we obtain the following short exact se- 
quences: 

(1)  ~Z2  ~ GL +T4, R) ~ GL+(4, R) ~ ( 1 )  
IT JT (5.1) 

( 1 ) ~ Z 2 ~ S L ( 2 ,  C) & SO~ 3) -- .(1) 

where ) 'and j are the inclusion homomorphisms. 
Now define L~ = SM XsL(2" c) GL +(4, R) as a prolongation of SM. 

Then L'~M is a principal fiber bundle over M with standard fiber 
GL+(4, ~) and with action defined by [u, a] �9 b = [u, ab] for u ~ S M  and 
a, b~GL+(4, R). Observe that SM may be identified as a submanifold of 
L~ since SM = SM XSL(2, C ) SL(2, C). Define a map •: L ~ - - . L ~  
[u, a] ~[2(u),  .~(a)]. Then 2-is well-defined and the following diagram 
commutes: 

i 
s m  ~ L~ 

J, Z$ (5.2) 
o oM ~ L~ 
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Moreover, 

,~([u, a] �9 b) = 2"([u, a]) �9 A.(b) Vu ~ SM, Va, b ~ GL + T4, ~) 

So ( L ~ ,  2 ~) is a prolongation of L~ The topological condition for 
existence of the prolongation of L ~  is the same as the condition for the 
existence of a spin structure (Dabrowski and Percacci, 1986). 

Note that S M  can be recovered from L ~  by symmetry breaking via 
the tensor field ~: L ~  T2~ 4, where we define ~.'=,~*~. As before, 
y,: L ~  T2N 4 is a tensorial function corresponding to a Riemannian 
metric tensor field on M. ~ is also a tensorial map and S M  =~-~(q).  
Indeed recall that O~ is obtained by symmetry breaking of L~ i.e., 
O~ = g-~(q), where q = diag(1, - 1 ,  - 1 ,  - 1 ) .  From the construction of 
prolongation and extensions in diagram (5.2) we have that 

l(rl) = 2 -  ' o s l(rl) = 2-1(  O~ = S M  (5.3) 

Consider now the problem of lifting connections through this diagram. 
Let egg be the unique Levi-Civita connection on O~ determined by the 
metric function ~. The one-form cog extends naturally to a torsionless 
metric connection eSg on L~ considered to be the unique Levi-Civita 
connection on L~ Now lift the canonical 1-form to SM,  defining, as 
before, fT..= 2"0. Observe that lY is equivariant relative to the representation 
SL(2, C) --* GL(4, ~) given by a .v = A(a)(v) for a~SL(2 ,  C) and v~R 4 and 
it also vanishes on vertical vectors (Bleecker, 1981). Define (Sg,= 
A ~  o ()t*e)g). Then oSg is a connection on S M  (Bleecker, 1981), sometimes 
called the spin connection. Furthermore, cSg is torsionless in the sense that 
D~gO ~ = 0, where D~, is covariant differentiation with respect to the connec- 
tion aSg. To verify this, first note the above representation induces a Lie 
algebra representation sl(2, C)- ,g / (4 ,  R) g'ven by A . v  =A.(A)(v) for 
A ~sl(2, C), v ~  4. Then observe that 

= 2* dO + ( A .  o A ,  1 o 2*~Og) ^ (2*0) 

= 2*(D ~ 

= 0  

where 

~ ~ O-(X, r ) =  �89 O " ( r ) -  rbg(r ) .  O"(x)], vx,  Y+T,  S M  
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A question arises. Is this the same connection we would obtain by 
lifting o3 8 to L~ and restricting the result to SM? Define 

Then it follows that 

~glSM = ~  

We can extract from diagram (5.1) the following commuting diagram: 

SL(2, C) ~ GL +~4, R) 
A ~ a ~ (5.5) 

SO~ 3) j GL+(4, ~) 

Since the Lie algebra of a Lie group G can be identified with TeG, the 
corresponding diagram of Lie algebras gives us that f ,  o A , ~ =  h.,~ o j , .  
Now let X~T(SM). Then 

~'*~Ax) = k . ' o  ,~*%(7,x) 

= k.,o ~As  T,x) 

= l~g 1 o G o s ( i , ~ , X )  

= k .  l o k*i*c%(x) 

=/~ .~  o 2* ( j .  o mg)(X ) 

= k . '  of ,  o k*%(X) 

=}',o A~' o , t*%(x)  

= f , o  ~8(X) (5.6) 

Thus the metric connection geometry on L'a'M lifts naturally from the base 
frame bundle L~ and is shown to be an extension of the natural 
torsionless spin connection on SM. 

6. HAMILTONIAN VECTOR FIELDS RELATIVE TO A METRIC 
FUNCTION ON L~M 

Now that we have recalled (Dabrowski and Percacci, 1986) the 
generalization of a spin structure over the frame bundle L~ we can 
consider finding systems of Hamiltonian vector fields for equivariant metric 
functions induced on L ~ .  It is proven (Norris, 1993) that the Hamilto- 
nian vector fields X~- are tangent to OM as a subbundle of LM. We wish 
to investigate the analog on L~ 
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Note that we may extend 0 ~ to L'~M, i.e., define g.'= 2"0 on L~ The 
E4-valued 1-form ff is equivariant relative to the representation 
GL+T4,1t~)~GL(4,1t~) given by a . v = ~ ( a ) ( v )  for a~GL+('~4,1R) and 
v ~ E+. This implies that dff is a nondegenerate closed tensorial 2-form on 
L%~14 and thus provides L~ a 4-symplectic structure. 

We now seek E4-valued vector fields X~ on L~ that are solutions to 
the system 

d~ ~j = - 2 X ~  ~' aft j~ (6.1) 

It is convenient to introduce local coordinates on L~ In order to define 
a chart of L'~M in a neighborhood of ~L~ first choose a local chart 
(x ~, U) at p ,= ~(~) e U, where ff = n o 2" is the canonical projection of L~ 
onto M. Then, using a local trivialization, r ~ - I ( U ) ~  U x GL~'(4, R) 
and the universal covering property of GL+(4, R), one has that for 
~(~) = (p, g) there is an open neighborhood V c GL+(4, R) containing g 
such that id x ~IU x V is a diffeomorphism onto U • that respects 
the right action. We may now define coordinates {s ffj} from an open 
neighborhood of J in ff-~(U) to x(U) x 7~(V), 

yc i = x i o 
~ = n~o ,~ ( 6 . 2 )  

Since we have defined the symplectic structure and equivariant metric 
function as pullbacks via ~" of the respective objects on L~ we can find 
local expressions on U • V for the Hamiltonian vector fields using the 
same calculations as on L~ Invoking the analogous zero-torsion prop- 
erty of the lifted Levi-Civita connection, 

X g ~ X ~ d f f k = O  Vi, j , k = O  . . . . .  3 (6.3) 

we obtain 

X~- = o ~ " b f f ~ + . j , . g  re,rOb C ~  (6.4) 

where ~b are the Christoffel symbols of the lifted Levi-Civita connection. 
Thus we obtain the parallel transport of linear frames and coframes along 
timelike geodesics of F, 

d2"~i ~i d'~j d~k 
dt - - Y  + Fkk if[ d~ - 0 (6.5) 

and 

DrY7 _ d r ~  ~ ~ dff  i 
D--T - dt - FiJ-dt- ~ '  = 0 ,  a = 1,2, 3 (6.6) 
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when restricted to the open neighborhood U x V of L'vM. This is in exact 
analogy to that of the n-symplectic theory on L M  (Norris, 1993). We can 
proceed to verify that the horizontal distribution and thus the set of 
Hamiltonian vector fields are tangent to S M .  So S M  is an "integral" of the 
set of Hamiltonian vector fields and is analogous to constant-energy 
surfaces in standard symplectic geometry. 

7. INITIATION OF PREQUANTIZATION PROCEDURE 

Now that we have in hand the geometry of spin bundles we turn to 
a quantum mechanical application. We want to recast the fundamentals 
of the Kostant-Souriau theory of geometric quantization (Woodhouse, 
1980), taking for the 4-symplectic manifold the prolongation L~ of the 
bundle of linear frames of spacetime M with the 4-symplectic 2-form dO-. 
We restrict attention to the essentials of the initial prequantization proce- 
dure. 

In the naive prequantization program one assigns to each observable 
f: T * M - ~  ~ a Hermitian operator 

f - ,  ~ r  = - i h X  s (7.1) 

The linear operator ~ i  acts on the set of square integrable functions 
~b: T * M - - *  C, square integrability being defined with respect to the natural 
Liouville volume element on T * M .  Although the assignment (7.1) is not 
the correct assignment in the full geometric quantization theory, it will 
suffice for our purposes here. 

We consider a spacetime (M, g) which admits a spin structure. Let Xg 
be the set of Hamiltonian vector fields on S M ,  where S M  is viewed as a 
subbundle of L B .  Consider the prequantization operator assignments that 
one can make for the metric tensor Hamiltonian observable on L B .  The 
natural analog of (7.1) is 

~, ~ ~ = - ih.~e = - ihXi~ri (7.2) 

with the Xg given in (6.4). 
We consider the spinor representation of the operator ~e on 

L 2 ( S M ,  C4), which we define by 

~ ~ ~ - y i ~ g  = ihyiX~ = ihTJBi (7.3) 

where the four ~i are appropriate Dirac matrices. In writing equation (7.3) 
we note that the B~ = ~;sX~- are the horizontal vector fields defined by the 
Levi-Civita connection on L'~hr. It follows that - y ; ~ -  in equation (7.3) is 
the Dirac operator on S M  (Bleecker, 1981). 
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Let ~ttEL2(SM, C 4) be a Dirac 4-spinor transforming under SL(2, C) 
transformations on the spin bundle as 

W(u �9 a) = p(a -1) �9 ~P(u), VuESM,  Va~SL(2,  C) (7.4) 

where p denotes the 4-spinor representation of SL(2, C). Then it follows 
that 

7 , ~ ( V ) ( u  �9 a) = p(a - b "  ~',~i~('e)(~) (7.5) 

Thus the eigenvalue equation 

i - y e ~ e ( q  ~) = #q~ (7 .6 )  

for the prequantization operator ~i~g is equivariant on S M  and is in fact 
just the Dirac equation 

ihT'B,(q j) = #q~ (7.7) 

8. CONCLUSIONS 

This work incorporating geometry into the physics of spinning parti- 
cles is significant in view of the central role played by the Dirac equation 
in all relativistic theories involving the half-integer spin properties of 
fermions. Moreover, our work addresses in a rather direct way one of the 
most fundamental features of the quantum theory, namely the unavoidable 
interaction of observer and object. Indeed, since the orthonormal frame 
bundle O M  may be considered the "bundle of Lorentzian observers," the 
bundle O M  together with the 4-symplectic structure might be called the 
"phase space of relativistic observers." This seems an ideal setting to 
consider questions relating to the quantum mechanical phenomenon of the 
interaction of observer and object. Indeed, the spin bundle S M  covering 
O M  has structure group the universal cover of the Lorentz group 
(Bleecker, 1981) and it also has a previously unrecognized 4-symplectic 
structure that, following a natural geometrical construction, leads easily to 
the correct relativistic equation for the fermions. Because our procedure 
parallels those of standard geometric quantization on symplectic manifolds, 
we are led to investigate the construction of the Hilbert space of prequan- 
tization, the frame bundle analog of the line bundle, polarizations on this 
frame bundle, and initiation of the quantization procedure. We hope to 
return to these questions in later publications. 
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